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Abstract—The analytical treatment of transient heat conduction problems for one-dimensional multilayered
composites by the orthogonal expansion technique requires the solution of a corresponding eigenvalue
problem if this analytical solution is to be implemented for practical purposes. Such an eigenvalue problem is
not of the conventional Sturm-Liouville type because of the discontinuities of the coefficient functions. Its
solution with conventional techniques is not guaranteed from missing eigenvalues in the course of the

computation.

An analytical solution of one transient heat conduction problem in one-dimensional multilayered slabs,
cylinders and spheres is presented, which implements a safe algorithm for the automatic computation of the
cigenvalues and the eigenfunctions of the resulting Sturm-~Liouville type system.

NOMENCLATURE

A4, . accuracy of the eigenvalues, Step 1 of
the algorithm;

Cw. Dy, constants, equation (4a);

I, number of eigenvalues required, Step 1
of the algorithm; )

I, maximum number of iterations, Step 1
of the algorithm;

Jo, Yo, Bessel functions of the first and second
kind, respectively;

[K{u)], matrix, equations {9a) and (9¢);

[K&(u)], the triangulated form of [K(u)];

L, order of the power series
approximation, Section 1;

N(), total number of eigenvalues, equation
(10);

No(p), total number of eigenvalues of the
degenerate system, equation (12b);

Nox(), total number of eigenvalues of a single

layer, equation (12c);

N, normalization integral for the ith
eigenfunction, equation (12b);

Py, x), 0, (s, x), functions, equations (5d) and (5¢),

Table 3;

Ti(x, 1), temperature distribution in the kth
layer;

U,(x, x), Vi(u, x), functions, equations (4c}4f),
Table 2;

W.(Ax),  function, equation (16);

a4. 4, by, a,, coefficients, equations (9d)}+9g);
Ci- heat capacity of the kth layer;
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d, the main diagonal of the matrix
[K4(u)], equation (13);

S, S5 functions defined in equations (If) and
(2¢), respectively;

hy, film coefficient at the interface x = x;;

ip, iteration counter, Step 3 of the
algorithm;

ky, thermal conductivity of the kth layer;

m, geometry index, explained in Section 2;

n, total number of layers;

r, increment of the eigenvalue parameter,

Step 2 of the algorithm;
s([K(p)]), the ‘sign count’ of the matrix [ K(z)],

[1,2];

t, time;

u, (1, x), vi{y, x), functions, Table 1;

X, space coordinate;

z, parameter, Section 5.

Greek symbols

®o» Bo» % By Parameters, equations (1b) and
(le);

a*, thermal diffusivity;

2, parameter, equation (16);

Jix eigenvalue parameter;

' the ith eigenvalue;

7, = 3.1415926;

Pros specific gravity;

W, (1, x), the ith eigenfunction in the kth layer;

Y, value of the corresponding

eigenfunction at the interface x = x;;
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Oy, O, defined in equations (1b) and (l¢);
w;, defined in Section 3;

Qx,), Qdx,), defined by equations (2d) and (2e).

Subscripts
i, the order of the eigenvalue p; and the
corresponding eigenfunction ¥ (u;, x),
i=123,...;
k, dummy variable denoting any of the

layers, k= 1,2,...,n.

1. INTRODUCTION

THE TRANSIENT temperature distribution in a com-
posite medium consisting of several layers of different
physical properties in contact has numerous appli-
cations in science and engineering. Various methods
are available for the analysis of such problems: the
orthogonal expansion technique and the Green’s
function approach [3-14], the adjoint solution
technique [8, 15], the Laplace transform technique
[16-19], and finite integral transforms [20-29].

It is obvious that there are various ways to derive a
formal solution of the problem considered. But to
implement this solution for practical purposes one has
to realize it numerically and this leads one to the
necessity of solving the corresponding Sturm-Liouville
eigenvalue-eigenfunction problem, which is not of the
conventional type because of the discontinuity of the
coefficient functions.

The safe and fast computation of the eigenvalues and
the corresponding eigenfunctions is a tricky piece of
work and the discussion of this problem has often been
avoided, as can be seen from most of the references
mentioned. As amatter of fact, Mulholland and Cobble
[10] developed an algorithm and presented a detailed
numerical example for a multilayered slab, while
Lockwood and Mulholland [24] did the same for a
multilayered cylinder. The method developed and
implemented by these authors allows for the
computation of the whole numerable spectrum of the
problem, but one is not guaranteed from missing
eigenvalues in the course of computation. Horgan et al.
[30] state that “considerable emphasis has been placed
on the development of computational schemes for
estimating eigenvalues and eigenfunctions for such
problems. These efforts have met with serious
difficulties due to the nonsmoothness of the coefficients
and the resulting spectrum irregularities,” and later “a
completespectral theoryfor Sturm-Liouville problems
with discontinuous coefficients has not yet been
established.” Utilizing integral equation methods,
these authors find lower bounds for the eigenvalues of
discontinuous coefficient Sturm-Liouville problems.
Almost ten years earlier, Ramkrishna and Amundson
[14],in a very interesting paper, have shown that if the
coefficients of a Sturm-Liouville problem are not
smooth in a finite number of points in the interior of a
finite interval, the corresponding Sturm-Liouville
operator is symmetric, which is also valid for the
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Green's function representing its inverse. As far as the
integral of the Greens function is a self-adjoint
operator in the corresponding Hilbert space, it follows
that the Sturm-Liouville operator has a numerable set
of eigenvalues and a complete orthonormal family of
eigenfunctions forming a basis there. Stating that the
purpose of their work is to “expound a convenient
formalism for the solution of the boundary value
problem under discussion”, these authors “avoid the
discussion of computational aspects such as the
evaluation of the eigenvalues” from the corresponding
eigencondition, although several interesting examples
from the field of heat and mass transfer have been
considered. Hodges [31] developed a procedure based
on the method of Ritz to compute the upper bounds of
the eigenvalues of a discontinuous coefficients’ Sturm-
Liouville problem, and has presented numerical
examples for their computation and the evaluation of
the corresponding eigenfunctions. His method allows
one to estimate only a finite number of eigenvalues of
the numerable spectrum of the problem, and with the
increase of the order L of the power series
approximation the numerical stability of the method
decreases thus “requiring double precision arithmetics
to solve the eigenvalue problem on a CDC 7600
computer for L greater than 6.” Horgan and Nemat-
Nasser [32,33] also make use of variational methods to
estimate bounds for the eigenvalues of problems of the
type under consideration.

Wittrick and Williams [1, 2] (the second paper
reviewing all their previous results) developed an
extremely efficient (in terms of computer resources)
algorithm for the safe and automatic computation of
the natural frequencies and buckling loads of linear
elastic skeletal structures. It permits one to estimate
exactly how many natural frequencies lie below any
fixed value of the frequency parameter without
calculating themexplicitly,and thus to converge onany
required eigenfrequency to any reasonably-chosen (in
the sense of the computer word-length) accuracy.

Recently, the algorithm of Wittrick and Williams
[1, 2] was adapted by Mikhailov and Vulchanov [34]
for the solution of linear Sturm-Liouville problems.
The computational procedure developed in ref. [34]
can be applied directly for the analysis of multilayered
slabs.

The purpose of the present paper is to generalize the
ideas from ref. [34], applying them for the cases of
cylindrical and spherical geometries. Next, utilizing the
orthogonal series solution for 1-dim. multilayered
composites derived in the forthcoming book [35], the
transient temperature distribution in such bodies is
computed to illustrate the effectiveness of the method
discussed.

2. FORMULATION OF THE TRANSIENT HEAT
CONDUCTION IN ONE-DIMENSIONAL
MULTILAYERED COMPOSITES

Consider a composite medium consisting of n
parallel layers of slabs, cylinders or spheres, asshownin
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Fig. 1. For generality, it is assumed that contact
resistances at the interfaces [10, 36, 37] are present
together with convection from the outer boundaries.
Let h, be the film coefficient at the interface x = x,,
k=123,...,(n—1). Each layer is homogeneous,
isotropic and has thermal properties (i.e. p,, ¢; and k;)
that are constant within each layer and different from
those of the adjacent layers. Initially, each layer is at
temperature T(x,0) = fi(x) in X;—y <X <Xy, k=1,
2,...,n.Fortimest > 0,heatistransferred from the two
outer boundaries according to boundary conditions of
the first, second or third kind. There is no heat
generation in the medium. The mathematical
formulation of this heat conduction problem governing
the temperature distribution T(x,t), k = 1,2,...,n,for
times ¢ > 0 is given as

WOTGt) 0, 0T(x1)
at =% ox X ox (1a)

inx,.y <x<x,fort>0and k=1,2,...,n, where
of = kf(p,c,) and m = 1/2 for slab, m = 0 for cylinder,
m= —1/2 for sphere; subject to the boundary

xl—l

conditions
. 0Ti(xq.t
0T )= Bk 102D g (1b)
at the outer boundary x = x, for 1 > 0,
0T (x4t :
o T [ D= T (0] (1)
b 0Tx) _ 0T+ 1(xw 1)
ky ox L x (1d)

at the interfaces x = x, k = 1,2,...,(n—1) for t > 0,

0T (xm1)

k 1-2m
anrl;n(xm t) +ﬁn wXn ax

=0, (le)

at the outer boundary x = x, for ¢t > 0. The initial
conditions are given by

T(x,0) = fi(x); t=0, (af)
Xy <x<x, k=12,...,n
) h
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F1G. 1. An n-layered composite: slab (m = 1/2), cylinder
(m = 0) and sphere (m = —1/2).
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By appropriate choice of the values of the parameters
%o, Bo» &, and fB,, various combinations of boundary
conditions of the first, second or third kind are obtain-
able at the two outer boundaries. The special case
oy = o, = 0 and B, = B, = I at the two outer bound-
aries is not considered here.

The physical significance of the interface boundary
conditions [equations (1¢) and (1d)] is as follows: the
finite value of the film coefficient b, k = 1,2,...,(n—1)
in the boundary condition [equation (lc)], implies a
discontinuity of the temperature at the corresponding
interface. The boundary condition [equation (1d)]
states that the heat flux is continuous at the same
interface. For the special case hy — oo, equation (1c)
reduces to

Tilxx 1) = Tar1(x01); t>0,
k=12,...,n—-1)

which means continuity of the temperature across the
interface at x = x;, or perfect thermal contact there.

(1g)

X = Xp,

3. THE FORMAL SOLUTION FOR A
n-LAYERED COMPOSITE

The formal solution of the problem, defined by
equations (1) has been derived and discussed in detail in
a forthcoming book [35, Ch. 8]. The final result
obtained there has the form

Tix,t) = {[ﬁ,,+a (kl ka x2m=1 dx

m—l)]
k—1 1 X ) . k-1 x_Zm—l

= m=14 d @
PARLLTT TR TR

k=1 kk

nol x2m-1)7-1
x?m~ldx+4 Yy )]
=1 M

=z xk(lun

X | aofp+ouBo+ ao%(

——exp(—pft)

2 [‘I’oQ(XoH(D Q.(xn)]}

(2a)

where the functions N, f;, Q(x,) and Q{x,) are defined
by

n X
=3 pkckf x172mpl x)dx,  (2b)
k=1 Xk -1

-3 o
k=1

Xy -1

Xic

XTI, ) filx) dx,  (20)
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Table 1. The linearly independent solutions u,(u, x) and v,(1, x) of equation
(3a) for slab, cylinder and sphere

Geometry m uy, %) £y, x)
Slab 1/2 cos {w;x) sinf{w;x)
Cylindert 0 Jolwx) Yol x)
Spheret —-172 sin (wyx)/(w,x) c0s (. X)/(w, x)

fxo > 0; here and in what follows, the derivations are valid for hollow

multilayered cylinders and spheres.

Wit Xo) + kx5~ 2™ Wi (15, X o)

Qx) = — . ()
—koxl-2myr ()
Q,(X,,) — ‘Pin(/'liv Xn) :":_"ﬂ lyxn(yn X,,). (26)

In equations (2), y; and Wy, x), i = 1,2,... are the
eigenvalues and the eigenfunctions of the problem

d | o2 @V X) 2.1-2m -
I [x dx +wix Vu,x) =0 (3a)

in x,_; <x<x, k=1,2,...,n and o, = pla})~1?;
subject to the boundary conditions

o' (1, xo)—ﬂoklx})_zmqpl(ﬂ: xo) =0,
—kyx? _zm\Pi(ﬂ, x) = h[Vulp, x)— Wi (10, X015

(3b)

k=12,...,n-1), (3c)

k¥, x0) = ks s Wi (0305
k=12,..,(n-1), (3d
o0, ¥, x4 Bokxa T2 x,) =0 (3e)

where the prime denotes differentiation with respect to
x.For the special case h, —» oo, the boundary condition,
equation (3c), reduces to

Y, %) = Vel x); k=1,2,...,(n—1) (3f)

The temperature distribution T;(x,t) in any layer k,
k=1,2,...,n, of the n-layered slab (m = 1/2), cylinder
(m =10) or sphere (n= —1/2) can be determined
utilizing equations (2) if the eigenvalues y; and the
eigenfunctions W;,(u;, x) are known. Therefore, in the
next section the computational scheme for the estima-
tion of the eigenvalues and the eigenfunctions will be
discussed.

4. ANALYSIS OF THE EIGENVALUE PROBLEM

Let u,(i1, x) and v(i, x) be two linearly independent
solutions of equation (3a). Table 1 shows these
functions for the cases of slab, cylindrical and spherical
geometries.

The eigenfunctions W,(u,x) are generally con-
structed as a linear combination of the elementary
solutions u,(p, x) and v,(u, x) in the form

\Pk(Ju: X) = Cl”k(}‘v x) + Dkvk(ﬂy x)'

However, in the computational procedure to be
described in what follows, the constants C, and D, will
be replaced by the values of the eigenfunctions
W, x; — 1) and W, (p, x;) at theend points x = x; _,and
x = X,k = 1,2,...,n,1espectively. For these quantities
the following notation will be used:

Wi =Y xi-); W = Wi x);
k=12,...,n

(4a)

Todo this, oneevaluatesequation(4a)forx = x,_, and
x = x,and then solves theresultinglinear system of two
algebraic equations for C; and D,. When the result is
introduced in equation (4a), one has

Wi, x) = P Ui, )+ V(L x)  (4b)
where
w(pt, X)0i (B2, x,) — 1, (41, X v (1, %)
U = 4
Y PR Y P Y N Y P N
Vil x) = w1, X - 1)0r(p, X) — u (g, XJ0rpt, X _ ) (4d)

(g, 2 — 1 )oi(pt 23) — 15 (g1, X donat, - 1).

Table 2 shows the functions U,{y, x) and ¥y, x) for the
cases of slab, cylindrical and spherical geometries.
Note that the special choice of the functions U,(u, x)

Table 2. Solutions U,(j1, x) and ¥y, x), defined by equations (4c) and (4d), for slab, cylinder and sphere

Geometry m Uy, x) Vilu, x)
Slab 12 sin [, —)] sin [@y(x—x, )]
sin [wu(xe —x;-1)] sin [, (x,—x, )]
Cylindert o J o @) Vo)~ J of@ixe) Yo(0,x) Jo(@ - )Yol@4x) —J ol X) Vo0 1)
Jolwnxy - 1) Yolwex,) — J (@, x) Yolwpx, - ) Jo{yxy - 1) Yolwixe) — J o) Yo(@ixg - 1)
Spheret _12 X~y sinfo{x,—x)] X, sin [fodx—x,_)]

x  sinfo(x,—x,-4)]

x sin[w(xy—x, )]

T xo > 0; see footnote to Table 1.
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Table 3. The functions P,(u, x) and Q,(x, x), defined by equations (5d) and (5e), for slab, cylinder and sphere

P h(/" X)

Geometry m

il x)

cos [w,(x, —x)]

Slab 1/2 -y —————
/ “ tSin(wk(xk_xk—l)]

Cylindert 0

J (%) Yol xy) — J (@ x) Vi (@, x)

. €05 [wy(x—x,—y)]
* sin [ooxy —X¢-1)]

. Jolox, - ) (w,x) —J (%) Yol x, - 4)

Wy

— WKy

Xk-1

Spheret ~Hsin [ —xx-1)]

—12

x {xay, cos [eyfx; —x)] 4+ sin [w,(x;—x)]}

Jo(wyx - 1) Yolwex) — Jolox,) Yoleoex, - )

o Jolonxy - ) Yolwix ) = J olwex) Yolwx, - )
R
sin [a,(x — X -1)]

x {xewy cos [y(x—x )} —sin [o(x —x,_ )]}

txo > 0; see footnote to Table 1.

and ¥(u, x), equations (4c) and (4d), implies that
Uk(#’ Xy - l) = l; Uk(”’ xk) = 0,
K xi-1) =05 Knx) =1

First consider the case when I, — o0, k= 1,2,...,
(n—1). If the solution, equation (4a), should satisfy
the boundary conditions, equations (3b), (3d)3f), one
has, respectively,

(de)
(4f)

[ao/Bo—Pi(pt, xo)1¥E + Py, x,)¥T = 0, (5a)
Pyl x, Y¥5 - 1 000 x3) — Prow 1 (1, x,)THE
+P (x4 )¥YE =0, k=12,...,(n—1), (5b)
13;(}1, x)Vr- 1 +[Qul %) +(2/BJIYE =0 (50)
where
Pp, x) = kyxt~2"Us(p, x), (5d)
Qui, x) = kex' 2"V, X). (5¢)

In the derivation of equations (5), the relation

P, x) +Qulpt, xx- ) =0 6

was substantial.

To prove the relation, equation (6), one can write
down equation (3a) for the two linearly independent
solutions (i, x) and (g, X)

[xl B 2mu;‘(#, x)], + wl%xl - zmuk(.u’ X) = 03

x! 72" (1, X)) + 0 x! "2y, (1, x) = 0.

(7a)
(7b)
Equation (7a) is then multiplied by v (g, x), while

equation (7b) was multiplied by u,(y, x). The two results
are subtracted and the final result isintegrated over the
interval {x; _, x;). Thus, one has

X,: - zm[“;c(“’ xk)vk(}lr xk) - uk(.u: xk)v;c(ﬂv xk)]
—Xé-—lzm[“l(#: Xy - )0 X - 1)
—u i X okl X, -1)] = 0. (8)

From equations (4c), (4d), (5d), (5¢) and (8), one proves
the validity of equation (6). Table 3 shows the functions
P,(p, x)and Q,(y, x)for the cases of slab, cylindrical and
spherical geometries.

The system of equations, equations (5), will form the
basis of the analysis for the computation of the
eigenvalues and the eigenfunctions of the eigenvalue
problem defined by equations (3). Therefore, one needs
the values of the functions P,(u,x) and Q,(x, x) at the
end points x = x,_, and x = x; for each subregion &,
k = 1,2,...,n. These values can easily be obtained from
Table 3. For the case of cylindrical geometry (m = O) the
use of the Wronskian relationship leads to a sim-
plification of the coefficients Py(z, x,) and O;(gs, Xy - 1)-

Equations (5) form a linear system of (n+1)
homogeneous equations for the determination of WV},
k=0,1,2,...,n. These equations can be represented
in matrix form as

a b, 0 0 0
bl a; bz 0 0
0 b, a by ©

K@i=| . . . . .0

[KI{¥*} =0 (9a)
where
{P*}7 = (P&, 1, Y5, P2} (9b)
is the transpose of {'¥'*} and
Moy by 0 (99)

0 bn-—l -1 bn
0 0 b, a, R
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where
ay = ao/fo— P11, Xo), (9d)
b, =Pu,x); k=12,...,n (9e)
@ = 01, x)—Pi (1, x); k=1,2,...,(n=1), (9f)
a, = Q.14 x,) + /B, %2

If the system of equations, equation (9a), has a
nontrivial solution, the determinant of the matrix
[K ()], equations (9¢)+9g), should vanish

det([K(w)]) = 0. (Oh)

The transcendental equation, equation (9h), has an
infinite number of real roots, which are the eigenvalues
ofthecigenvalue problem, defined by equations(3). The
standard methods for the solution of equation (9h)
always carry the risk of missing some of the eigenvalues
in the course of computation ; for large values of n the
estimation of the determinant of [K(u)] can also lead to
numerical instabilities. Therefore, in the next section a
new approach will be described for the computation of
the eigenvalues of the eigenvalue problem, equations

3.

5. PROCEDURE FOR THE COMPUTATION
OF THE EIGENVALUES

Wittrick and Williams [1, 2] developed an efficient
procedure for the computation of the eigenfrequencies
and the buckling loads of linear elastic skeletal
structures. Since equation (9a) is presented in the same
form as the one utilized by Wittrick and Williams, it is
not difficult to adapt their procedure to compute the
eigenvalues of the problem considered here.

Wittrick and Williams [1, 2] have shown that the
number of positive eigenvalues, N{f), lying between
zero and some prescribed positive value p = i of the
eigenvalue parameter p, is equal to

N() = No(i) + s([K(D)]) (109)

where No(f2} is the total number of positive eigenvalues
not exceeding ji when all the components of the vector
{¥*} corresponding to jiare zero and s([K(ji)])denotes
the ‘sign-count’ of the matrix [K(fi)] as defined in refs.
[L,2].

To find N{7i), one takes into account the fact that
when all the components of the vector {¥*} are zero,
the system of equations, equation (3a), degenerates into
a decoupled set, namely

(IR ] X! T x) = 0 (11a)

in x,-y<x<x;, k=12,...,n, subject to the
boundary conditions

\yk(‘uv Xg~ l) =0,
Wi, x,) = 0.

(11b)
(11c)

The eigencondition of the problem, defined by
equations (11), is

Ut X— 1 )oaa i) — i, X, )01, X ) = 0. (12a)

M. D. MikdaiLov, M. N. Ozisik and N. L. Vurcuanov

This transcendental equation must first be solved for
each layer k, k = 1,2,...,n to evaluate the number of
eigenvalues, N, (ji), not exceeding /i, for it. Then, the
total number of positive eigenvalues, Ny(f), for the
entire multilayered composite can be evaluated as

No(@) = 3. Now(i)- (12b)
k=1

For the cases of slab (m = 1/2) and sphere (m = —1/2)

an explicit relation for the determination of N, (f) is

available, namely

No(i)) = int [wxy— X~ 1)/7]

where the symbol ‘int (z)’ denotes the largest integer not
exceeding the value of the argument z of the function.

For the case of a cylinder there is no explicit formula
of the kind of equation (12c). However, this difficulty
canbealleviated if one considers the fact that form = 0,
equation (12a) has the form

(120)

(12d)

and that the roots of this equation can be computed
using standard techniques and then stored in the
memory of the computer. Thus, for any specified value
of i, the number of positive eigenvalues N, (), lying in
the range 0 < pt < fi, for each layer can be determined
and No(fi) can be evaluated according toequation(12b).

The ‘sign-count’ s({K (fi)]) isshown [1,2] to be equal
to the number of negative elements along the main
diagonal of the matrix [K2(@)], which is  the
triangulated form of the matrix [K(i7)], or,equivalently,
the ‘sign-count’ is equal to the number of negative
elements in the sequence d,/d,y, d,/dy,...,d./d,_,,
where

dp = dy @y +ae)—~dy-2bi g5 k=23,...,n (13)

where a, and b, are defined by equations (9d}-(9g), and
dy=1,d, = a,.

The case of boundary conditions of the first kind at
X=X, OI X=X, or both, corresponds to f, =0
or B, =0or B, = f§, = 0, thus resulting in g, — o0 or
a, — co ora, — oo and a, — oo simultaneously, respec-
tively. In any one of these cases, one simply neglects
the corresponding row and column of [K(g)], as they
do not influence the elimination process described
by equation (13) and imply that

Jolwyxy - 1) Yolwxe)— J ol ) Yolwexi ) = 0

‘Pl(ﬂvxo) = 0 or lyn I‘Z’xn) = 0
or lyl(ﬁ’ xO) = ‘Pn(ﬁ’ xn) = 07

respectively.

When both terms on the RHS of equation (10) are
computed as described in the above, the quantity N()
becomes available and the following algorithm can be
used to find the eigenvalues u, i = 1,2,3,... for the
system under consideration:

Step 1. Prescribe the following quantities : I, the total
number of eigenvalues p, i=1,2,...,1 to be
computed; I, the maximum admissible number of
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iterations to compute any eigenvalue p;; A, the
accuracy of the eigenvalues desired.

Step 2. Prescribe upper bound y, = 0, lower bound
i, =0 and the initial value of the increment r of the
eigenvalue parameter y; set the eigenvalue counter
i=1

Step 3. Set the iteration counter iy = 1.

Step4.Setr = 2rand p, = p+r. Compute N(z,). If
N(p,) < i, go to Step 5, else go to Step 6.

Step 5. Set yuy, =p,and iy =i+ 1. Ifig < Iy goto
Step 4, else go to Step 12.

Step 6. If abs (1, — ;) < A go to Step 11, else go to
Step 7.

Step 7. Set fi = (i, +)/2 and compute N(). If
N(1) < i, go to Step 8, else go to Step 9.

Step 8. Set p; = fi and go to Step 10.
Step 9. Set p, = jiand go to Step 10.

Step 10. Set iy, = iy+ 1. 1f iy < I, go to Step 6, else go
to Step 12.

Step 11. Set y; = (u, -+ 44)/2 and store ;. Set u, = p;,
= wandi=i+1.Ifi < IgotoStep3,elsegotoStep
13.

Step 12. This is an error output indicating that
convergence has not been achieved in the sense of the
values of I, and A prescribed.

Step 13. This is the successful output of the algorithm
for the computation of the eigenvalues which is to be
followed by the computation of the corresponding
eigenfunctions.

From the description of the above algorithm it is
obvious that in the course of the iterative process of
converging upon some eigenvalue g; the choice of fi is
quite random. Thus one is not guaranteed that some
value of i will not be close enough to some zero of the
denominator of the functions Py(i,x) and Qs x),
equations (5d) and (5e) or that division by zero will not
occurin the course of the elimination process, described
by equation (13). In both cases a slight change of the
value of /i enables one to continue the execution of the
algorithm discussed. It should also be noted that this
multilayer algorithm is not suitable for the compu-
tation of the eigenvalues of a single layer problem,
subject to boundary conditions of the first kind at both
boundaries.

6. CONTACT RESISTANCE AT THE INTERFACE

The foregoing analysis and the computational
scheme described are directly applicable ifall the layers
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are in perfect thermal contact. However, the above
procedure can readily accomodate the situation that
involves contact conductances between any two
adjacent layers as now described.

Suppose there is contact conductance at the interface
Xx = x; or equivalently, between the layers k and k+ 1.
Assume that the presence of the interface resistance can
be replaced by a fictitious layer of thickness I}, ,,,
which is so small that its capacitance can be neglected.
Then theeigenvalue equation,equation(3a),in thelocal
coordinate x* and for «f, ., — oo degenerates into the
following equation:

Yik+1(x*) =0 (142)

in 0 < x* < ¥, ;,. The integration of this equation,
first from O to x* and then from x* to I¥,,,, after
transforming to the system coordinates, yields the
following expression:

(K* /1) e s (¥ (s X4 1) — o, x)] = ki, x,). (14b)

A comparison of this result with equation (3c) reveals
that the two results coincide if

b, = (k*/l*)k,k+l'

Equation (14c) implies that the presence of a contact
conductance h, is equivalent to a fictitious layer with
o* — oo orw* — 0. The functions Py, x)and Q (i, x) for
such a layer are determined from the results in Table 3,
form = 1/2, by setting w} - 0and x,—x,_, = I*.One
obtains

(14c)

P, xy 4 4) = PH, xi) = — Iy, (152)
0% X— 1) = Q¥ i) = . (15b)

The computational procedure for this case is now
straightforward. Whenever there is a contact conduct-
anceatsomeinterface x = x,,its presenceis replaced by
a fictitious layer for which the functions P* and Q* are
taken as defined by equations (15). In the case i, — o0,
one has P* = Q* — oo for the fictitious layer and as a
result, by equation (9f), a; — co forit.Insuch acase one
neglects the corresponding row and column of [K(;i)]
in equation (9c) as they do not influence the
computational process.

Once the eigenvalues are computed, the determi-
nation of the eigenfunction can be carried out making
use of equations (5a)-(5c), i.e.

1 = [Pyl x0)—ao/Bo]VE/P1(u, x,),  (150)
Y= {[Pu» ,(y,x,‘)—Q,‘(,u,xk)]‘P;“—P,‘(y,x,‘)‘}’,’f_1}
+ Pt xesy), k=12,...,(n—1). (15d)

Since the eigenfunctions are arbitrary within a
multiplication constant, one can assume that ¥§ = fo
and then compute consequently W¥, k=1,2,...,n
from equations (15c) and (15d). For boundary
conditions of the first kind f, = 0 and ¥§ = I can be
accepted to start the computation of the other
components of the vector {¥*}.
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Tofind the norm of the eigenfunctions one makes use
of the relation [8]

2 2
2 _X )M 2
inVm(}.x)dx =2 {(1 )_2x2> W2(1x)

+%[W$,.(/’-x)]2} (16)

where W,,is any linear combination of Bessel functions.
The integrals defined by equation (2b) are rewritten
in a more convenient form as

X
f x172mp2g x)dx

= ¥ (1, x) 2
=j ;{%] dx. (17)

Comparison between the RHS of equation (17) and the
LHS of equation (16) yields

Wadox) = x™ ™Yl X). (18)

The differentiation of equation (18) leads one to

Widwx) = x ™27 [x™ P, X)
nx™” Wl ). (19a)
The last relation can be rearranged as
Whlwx) = XU Py X)
+ \Pk Qulp;, )] —mx~ DY, ). (19b)

Introducing equation (18) and equation (19b) into

equation (16), one finally obtains

X3
J x1 722 (g, x)dx

P
= o)~ 'Ix (xiwh —m)¥E?
— X7 2T(xE - 0k —~mh)PE2
+(2wik)_lxk_z'"{kflxk'"[‘yn—1Px(}l.',xk)
WO x )] —m¥E}?
— Qo)™ 2k xR [ 1 Palpti X 1)
PO xi - )] —mPE- (2 20)

Equation (20} allows one to estimate the normalization
integral defined by equation (2b) and then estimate the
normalized eigenfunction

Pl x) = Wil )N M2, 21
Finally, equations (2d) and (2¢) take the form
Qxo) = {¥3[1+ Py(1;, xo)]
—WEP (1, x1)} (o + o)~ ', (22a)
Qfx,) = {¥r[1— 0.0, x,)]
=R P, x )} @, +6,)77. (22b)

7. THE SOLUTION OF
THE ORIGINAL PROBLEM

The solution of the initial-boundary value problem,
defined by equations (1), was written down in the
general form, equation (2a). Now it will be written
explicitly for the cases of multilayered slabs, cylinders
and spheres. In a form adequate for direct
computations, one has

form=1/2,

Tix, ) = (_x S TR A ] Y
k(X,t)_ ﬁn+a kk +i=§p] k, Z ﬁ; 0

_ k-1, . k—1 1
+[ﬂo+ao(x :"" +Y Xi kx' LIS Z )](D,,}
k i=1 i l'

X I:“oﬁﬁ'“nﬂo‘*'“o“n(i Xk : + Z )]_l

Z Flbe2) cxp (= ) i 200600+ 0,045 (232)
Tx,f) = ! e ) ¢
Wx, 1) = {[ﬂ ( n ; +z ;&-1 ki Xim1 o= K ’
ﬂo"‘“o(k Xeo x+2 .ln—+z hx;> (D"}
n—1 1 -
X [aoﬁn+anﬁ0+a0a" Z I‘k xk l+k§1 hkxk)]
- "Pik(ﬂi’x) =2 b
+ 2 —y e )= i 2[00 +0,24)]) (230)
i=1 i
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o[22 £ 2D B
T Y AT Y A P | Y
X {aoﬂ,. + o, B0+ o2, [;Zl Ll: (xkl_ R - ;1:) +:§‘: h,;f }_ l
Wi, x)
+ iZl 2

form=0,and

exp (—piD{fi— 1 *[PoQx0) + P, Qx,)]1} (23¢c)

form= —1/2.

400 Once the eigenvalues and the eigenfunctions, y; and

Yoy, x), respectively, have been computed as was
described in the previous sections, no difficulty is
encountered in evaluating the solutions, equations (23),
having in mind also Tables 1-3.

300

8. ILLUSTRATIVE EXAMPLES AND
CONCLUDING REMARKS

200 Toillustrate the applicability of the solutions derived

and the method proposed, a number of problems were

solved. The code prepared for this purpose was first

\ tested onseveralsingle layered problems with solutions

that were previously known. Then the same problems

\tm{ L — were modelled as multilayer problems, the adjacent

layers having identical physical properties. A

satisfactory coincidence (approximately of the order of

the accuracy of the eigenvalues computed) was

observed in the computation of the corresponding
eigenfunctions and temperature distributions.

Figure 2 shows some temperature distributions for

the numerical example discussed in detail in ref. [10].

FiG. 2. Temperature distribution for various times (the Figures 3 and 4 show similar distributions for the
example of ref. [10]). cases of cylindrical (m = 0) and spherical (m = —1/2)

T (°C)

00—

x {em)

*o X1 X2

Fi1G. 3. Temperature distributions for a two layered cylinder for various times:af = 5,x0 = 1, x; = 2,x, = 4,
ad=1lm=0,00=0¢,=1,8,=8,=0,0,=T,, &, =0, T;(x,00 =0,k =1,2.
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1.0
,:0 0.5— t >®
-

t1:08
t:=0.1
o]
Xo XI Xz

X

F1G. 4. Temperature distributions for a two layered sphere for various times: af = 5,a% = 1, xo = L,x, =2,
xy=4,m=—12,0p0=0a,=1,B=0,=0,0=T,,®, =0, T1(x,0) =0,k = 1,2.

geometries, respectively the verification of the results
on Figs. 2-4 was obtained following the testing strategy
mentioned above.
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DIFFUSION DANS DES COUCHES COMPOSITES ET SOLUTION AUTOMATIQUE DU
PROBLEME DES VALEURS PROPRES

Résumé—Le traitement analytique du probléme de la conduction thermique unidirectionnelle dans des
composites multicouches nécessite la solution d’un probléme de valeurs propres si cette solution analytique
doit étre appliquée & des buts pratiques. Un tel probléme de valeur propre n’est pas du type conventionnel
Sturm-Liouville 4 cause des discontinuités des fonctions. Sa solution avec les techniques conventionnelles
n'est pas garantie de 'absence de valeurs propres au cours du calcul.

Unesolution analytique d'un probléme variable de conduction dans des plaques, des cylindreset des sphéres
multicouches est présentée qui applique un algorithme correct pour le calcul automatique des valeurs propres

et des fonctions propres du systéme résultant de type Sturm-Liouville.

DIFFUSION IN GESCHICHTETEN KORPERN MIT AUTOMATISCHER
LOSUNG DES EIGENWERTPROBLEMS

Zusammenfassung—Die analytische Behandlung instationdrer Probleme der eindimensionalen
Wirmeleitung in mehrschichtigen Korpern nach dem Verfahren der orthogonalen Reihenentwicklung
erfordert die Losung eines entsprechenden Eigenwertproblems, wenn die analytische Losung auf praktische
Probleme angewendet werden soll. Solche Eigenwertprobleme sind nicht vom normalen Sturm-Liouville-
Typ, da die Koffizienten-Funktionen Diskontinuititen enthalten. Die Lésung nach konventionellen
Verfahren ist wegen fehlender Eigenwerte im Verlauf der Berechnung nicht immer méglich. Eine analytische
Lésung instationdrer Probleme der eindimensionalen Wirmeleitung in mehrschichtigen Platten, Zylindern
und Kugeln wird angegeben, die einen sicheren Algorithmus fiir die automatische Berechnung der Eigenwerte
und der Eigenfunktionen des resultierenden Systems vom Sturm-Liouville-Typ enthilt.

HCCINEAOBAHHUE JH®®Y3HH B KOMHNO3UTHLIX C/10S1X HA OCHOBAHHH
PEWIEHHA 3AOAYH HA COBCTBEHHBLIE 3HAUEHHS

AHHOTRURA —AHANMUTHYECKOE HCCIIEIOBAHNE 3a/1a4 HECTAIIHOHAPHOI TENJONPOBOAHOCTH B OAHOMEPHBIX
MHOTOC/IOMHBIX KOMIIO3IHTHBIX CPEax METOAOM OPTOTOHANBHOIO Ppa3jokeHHs TpedyeT peiuenns
CoOTBETCTBYIOLIEN 3amauH Ha coOCTBeHHbIE 3HAYEHHSs B Cay4ae, ecia OHo Heobxoaumo 14
npakThyecknx ueieii. Takas 3amava ue seasercs obwrunoii 3amaveit Tuna Wtypsa-Jlnysuaas us-3a
HajdH4Hs pa3pbiBOB B K03QduLHenTHLIX GyHKuuAX. Ee pewenie oObI4HBIMH METOMAMH HE TapaHTH-
pyeTcs BBHIY OTCYTCTBHSA cOOCTBEHNBIX 3HayeHnii B npouecce pacyeta. [Mpeacrasiaeno anaiutHyeckoe
pettienne oaHOl 33424 HECTAUHOHAPHOI TEMJIONPOBOAHOCTH B OJHOMEDPHEIX MHOTOCIOHHBIX MAHTAX,
UHAHHAPAX H cdepax, KOTOPOE AAacT HANCKHEIT aATOPHTM JUIA aBTOMATHYECKOTO pacyeTa CoOCTBEHHbIX
3uayennil u pyHxuuil cucremel ypasuennit Tuna Wrypsa-Jinysunns.
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