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Abstract-The analytical treatment oftransient heat conduction problems for one-dimensional multilayered
composites by the orthogonal expansion technique requires the solution of a corresponding eigenvalue
problem if this analytical solution is to be implemented for practical purposes. Such an eigenvalue problem is
not of the conventional Sturm-Liouville type because of the discontinuities of the coefficient functions. Its
solution with conventional techniques is not ' guaranteed from missing eigenvalues in the course of the
computation.

An analytical solution of one transient heat conduction problem in one-dimensional multilayered slabs,
cylinders and spheres is presented, which implements a safe algorithm for the automatic computation of the

eigenvalues and the eigenfunctions of the resulting Sturm-Liouville type system.
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dt , the main diagonal of the matrix
[K6UI)], equation (13);

h(x),/;, functions defined in equations (If) and
(2c), respectively;

lit, film coefficient at the interface x = Xt;
io' iteration counter, Step 3 of the

algorithm;
kt , thermal conductivity of the kth layer;
m, geometry index, explained in Section 2;
n, total number of layers;
r, increment of the eigenvalue parameter,

Step 2 of the algorithm;
s([K(P)]), the 'sign count' of the matrix [KUl)],

[1,2] ;
t, time;
Uk(P, x), Vk(P, x), functions, Table 1;
x, space coordinate;
z, parameter, Section 5.

Greek symbols
ao,lfo, a., P., parameters, equations (Ib] and

(Ie) ;
thermal dilfusivity;
parameter, equation (16);
eigenvalue parameter;
the ith eigenvalue;
= 3.1415926;
specific gravity;
the ith eigenfunction in the kth layer;
value of the corresponding
eigenfunction at the interface x = Xl;

l'\01\IEKCLATURE

accuracy of the eigenvalues, Step 1 of
the algorithm;
constants, equation (4a);
number of eigenvalues required, Step 1
of the algorithm;
maximum number of iterations, Step 1
of the algorithm;
Bessel functions of the first and second
kind, respectively;
matrix, equations (9a) and (9c);
the triangulated form of [KUl)] ;
order of the power series
approximation, Section 1;
total number of eigenvalues, equation
(10);
total number of eigenvalues of the
degenerate system, equation (12b);
total number of eigenvalues of a single
layer, equation (12c);
normalization integral for the ith
eigenfunction, equation (12b);

Pk(/I,X), Qk(P ,X), functions, equations (Sd) and (5e),
Table 3;
temperature distribution in the kth
layer;

UkUI,X), J)(P,x), functions, equations (4c)-{4f),
Table 2;

Wm().x), function, equation (16);
ao- ak,bk,an, coefficients, equations (9d)-{9g);
Ck_ heat capacity of the kth layer;
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<Do, <Dn , defined in equations (1b) and (le);
W b defined in Section 3 ;
O.{XO),O.{xn) , defined by equations (2d) and (2e).

Subscripts
i, the order of the eigenvalue Jli and the

corresponding eigenfunction '¥ .{J!j'x),
i = 1,2,3, ... ;

k, dummy variable denoting any of the
layers, k = 1,2, ... ,11.

1. 1l't"TRODUCfION

THE TRANSIENT temperature distribution in a com­
posite medium consisting of several layers of different
physical properties in contact has numerous appli­
cations in science and engineering. Various methods
are available for the analysis of such problems: the
orthogonal expansion technique and the Green's
function approach [3-14], the adjoint solution
technique [8, 15], the Laplace transform technique
[16-19], and finite integral transforms [20-29].

It is obvious that there are various ways to derive a
formal solution of the problem considered. But to
implement this solution for practical purposes one has
to realize it numerically and this leads one to the
necessity ofsolving the corresponding Sturm-Liouville
eigenvalue-eigenfunction problem, which is not of the
conventional type because of the discontinuity of the
coefficient functions.

The safe and fast computation ofthe eigenvalues and
the corresponding eigenfunctions is a tricky piece of
work and the discussion of this problem has often been
avoided, as can be seen from most of the references
mentioned. Asa matter offact, Mulholland and Cobble
[10] developed an algorithm and presented a detailed
numerical example for a multilayered slab, while
Lockwood and Mulholland [24] did the same for a
multilayered cylinder. The method developed and
implemented by these authors allows for the
computation of the whole numerable spectrum of the
problem, but one is not guaranteed from missing
eigenvalues in the course of computation. Horgan et at.
[30] state that "considerable emphasis has been placed
on the development of computational schemes for
estimating eigenvalues and eigenfunctions for such
problems. These efforts have met with serious
difficultiesdue to the nonsmoothness ofthe coefficients
and the resulting spectrum irregularities," and later "a
complete spectral theory for Sturm-Liouville problems
with discontinuous coefficients has not yet been
established." Utilizing integral equation methods,
these authors find lower bounds for the eigenvalues of
discontinuous coefficient Sturm-Liouville problems.
Almost ten years earlier, Ramkrishna and Amundson
[14], in a very interesting paper, have shown that if the
coefficients of a Sturm-Liouville problem are not
smooth in a finite number of points in the interior of a
finite interval, the corresponding Sturm-Liouville
operator is symmetric, which is also valid for the

Green's function representing its inverse. As far as the
integral of the Green's function is a self-adjoint
operator in the corresponding Hilbert space, it follows
that the Sturm-Liouville operator has a numerable set
of eigenvalues and a complete orthonormal family of
eigenfunctions forming a basis there. Stating that the
purpose of their work is to "expound a convenient
formalism for the solution of the boundary value
problem under discussion", these authors "avoid the
discussion of computational aspects such as the
evaluation of the eigenvalues" from the corresponding
eigencondition, although several interesting examples
from the field of heat and mass transfer have been
considered. Hodges [31] developed a procedure based
on the method of Ritz to compute the upper bounds of
the eigenvalues of a discontinuous coefficients' Sturm­
Liouville problem, and has presented numerical
examples for their computation and the evaluation of
the corresponding eigenfunctions. His method allows
one to estimate only a finite number of eigenvalues of
the numerable spectrum of the problem, and with the
increase of the order L of the power series
approximation the numerical stability of the method
decreases thus "requiring double precision arithmetics
to solve the eigenvalue problem on a CDC 7600
computer for L greater than 6." Horgan and Nemat­
Nasser [32, 33] also make use ofvariational methods to
estimate bounds for the eigenvalues of problems of the
type under consideration.

Wittrick and Williams [1, 2] (the second paper
reviewing all their previous results) developed an
extremely efficient (in terms of computer resources)
algorithm for the safe and automatic computation of
the natural frequencies and buckling loads of linear
elastic skeletal structures. It permits one to estimate
exactly how many natural frequencies lie below any
fixed value of the frequency parameter without
calculating them explicitly,and thus to converge on any
required eigenfrequency to any reasonably-chosen (in
the sense of the computer word-length) accuracy.

Recently, the algorithm of Wittrick and Williams
[1,2] was adapted by Mikhailov and Vulchanov [34]
for the solution of linear Sturm-Liouville problems.
The computational procedure developed in ref. [34]
can be applied directly for the analysis of multilayered
slabs.

The purpose of the present paper is to generalize the
ideas from ref. [34], applying them for the cases of
cylindrical and spherical geometries. Next, utilizing the
orthogonal series solution for l-dim, multilayered
composites derived in the forthcoming book [35], the
transient temperature distribution in such bodies is
computed to illustrate the effectiveness of the method
discussed.

2. FORMULATION OF THE TRA/'\SIENT HEAT

CO/,\DUCfION IN O/'\E-D1l\tE/'\SIONAL

l\1ULTILAYERED COMPOSITES

Consider a composite medium consisting of II

parallel layers ofslabs, cylinders or spheres, as shown in



Diffusion in composite layers with automatic solution of the eigenvalue problem 1133

FIG. 1. An n-Iayered composite: slab (m = 1/2), cylinder
(m = 0) and sphere (111 = - 1/2).
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where the functions N; Ii, Q.{xo)and Q.{x n) are defined
by

3. TIlE FORMAL SOLUTION FOR A

n-LAYERED COMPOSITE

T,.(Xk,t) = 1k+l(Xk,t); t > 0,

X=Xk, k=I,2, ... ,(/I-l)

which means continuity of the temperature across the
interface at x = Xl> or perfect thermal contact there.

By appropriate choice of the values of the parameters
cco, Po, CCn and Pn, various combinations of boundary
conditions of the first, second or third kind are obtain­
able at the two outer boundaries. The special case
CCo = CXn = 0 and Po = B, = 1 at the two outer bound­
aries is not considered here.

The physical significance of the interface boundary
conditions [equations (lc) and (ld)] is as follows: the
finite value of the film coefficient hl> k = 1,2, ... ,(/1-1)
in the boundary condition [equation (lc)], implies a
discontinuity of the temperature at the corresponding
interface. The boundary condition [equation (ld)]
states that the heat flux is continuous at the same
interface. For the special case hk -+ so, equation (lc)
reduces to

The formal solution of the problem, defined by
equations (1) has been derived and discussed in detail in
a forthcoming book [35, Ch. 8]. The final result
obtained there has the form

(If)
T,.(X,O) = h(X); t = 0,

Xk-l < X < X b k = 1,2, ... ,/1.

at the outer boundary x = x, for t > O. The initial
conditions are given by

at the outer boundary x = Xo for t > 0,

01k(Xk, t) .
-kk ox = hk[T,.(Xb t)- T,. +I(Xb t)] (lc)

. 01k(Xk, t) _ k a1k+ I(Xk,t) (ld)
kk ox - HI ax

at the interfaces x = Xk' k = 1,2, ... , (/1-1) for t > 0,

1- 2m oT,.(Xn, t) _
Ct.nT,.(Xn,t) + Pnknxn aX - <1>n (Ie)

Fig. 1. For generality, it is assumed that contact
resistances at the interfaces [10, 36, 37] are present
together with convection from the outer boundaries.
Let hk be the film coefficient at the interface x = Xb

k = 1,2,3, ... ,(/1-1). Each layer is homogeneous,
isotropic and has thermal properties (i,e. Pb Ck and kk)
that are constant within each layer and different from
those of the adjacent layers. Initially, each layer is at
temperature T(x,O) =h(X) in Xk-l < x < Xk' k = 1,
2, ... , /I. For times t > 0, heat is transferred from the two
outer boundaries according to boundary conditions of
the first, second or third kind. There is no heat
generation in the medium. The mathematical
formulation ofthis heatconduction problem governing
the temperature distribution T,.(x, t), k = 1,2, ... , /I, for
times t > 0 is given as

x1- 2m o1k(X, t) = Ct.k*~ (x1- 2m 01k(X, t))
ot OX OX (la)

in Xk-l < x < Xk for t > 0 and k = 1,2, ... ,/1, where
Ct.: = kJ(PkCk) and m = 1/2 for slab, m = 0 for cylinder,
m = - 1/2 for sphere; subject to the boundary
conditions
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Table I. The linearlyindependent solutions utW. x) and VtW.x) of equation
(3a)for slab. cylinder and sphere

Geometry III

Slab
Cylinder]
Sphere]

1/2
o

-1/2

cos(cotx)
J o(cotx)

sin(COtx)/(cotx)

sin(COtx)
Yo(cotx)
cos(cotx)/(cotx)

t Xo > 0; here and in what follows. the derivations are valid for hollow
multilayered cylindersand spheres.

4. ANALYSIS OF THE EIGENVALUE PROBLEM

Let Uk{Jl,X) and Vk(P,X) be two linearly independent
solutions of equation (3a). Table 1 shows these
functions for the cases of slab, cylindrical and spherical
geometries.

The eigenfunctions qJt{Jl, x) are generally con­
structed as a linear combination of the elementary
solutions uk{Jl,x) and Vk{Jl,X) in the form

(2e)

(2d)

f""\( )= qJin(jli.Xn)-knx~-2mqJ;n{Jli.Xn)
~"I\xn .

rxn +Pn
In equations (2), Jli and qJj(Jli'X), i = 1,2•... are the

eigenvalues and the eigenfunctions of the problem

in Xk-l < x < Xk' k = I,2, ... ,1l and Wk = p(rxt)-1/2;
subject to the boundary conditions

rxoqJl{Jl,xo)-fJoklx~-2mqJ'I{Jl,XO)= 0, (3b)

-kkXl-2mqJ~{Jl,Xk) = hk['I\{Jl,Xk)-qJk+l{Jl,Xk)];

k = I,2, ... ,(1l-1), (3c)

kkqJ~{Jl,Xk) = kk+IqJ~+I{Jl,Xk);

k = 1,2, ... ,(1l-1), (3d)

IXnqJ.(Jl,xn)+ fJ.k.x~ - 2mqJ~(JI, x n) = 0 (3e)

where the prime denotes differentiation with respect to
x. For the special casehk -> co, the boundary condition,
equation (3c), reduces to

qJk(JI,Xk) = qJk+I(P,Xt); k = I,2, ... ,(Il-I) (3f)

The temperature distribution 'Ik(x, t) in any layer k,
k = 1,2, ... , II, of the n-layered slab (m = 1/2), cylinder
(m = 0) or sphere (m = -1/2) can be determined
utilizing equations (2) if the eigenvalues Pi and the
eigenfunctions qJit{Jli'X) are known. Therefore, in the
next section the computational scheme for the estima­
tion of the eigenvalues and the eigenfunctions will be
discussed.

However, in the computational procedure to be
described in what follows, the constants Ck and Dk will
be replaced by the values of the eigenfunctions
qJk{Jl, Xk-1) and qJk{Jl, Xk) atthe end points x = Xk-I and
x = xbk = 1,2, ... ,Il,respectively.Forthesequantities
the following notation will be used:

qJ{-I = qJk{Jl,Xk-I); qJ: = qJk{Jl,Xk);

k = 1,2, ... ,11.

Todo this, one evaluates equation(4a) for x = X k- I and
x = Xk and then solves theresuItinglinearsystem of two
algebraic equations for Ck and Dk • When the result is
introduced in equation (4a), one has

qJk{Jl,X) = qJ:-IUt{Jl,X)+qJ:v.{Jl,x) (4b)

where

Uk{Jl, x) = Uk{Jl,X)Vk{Jl,Xk)-Uk{Jl,Xk)Vk{Jl,X) (4c)
Uk{Jl,Xk- t>Vk{Jl,Xk)-Uk{Jl,Xk)Vk{Jl, Xk-I),

v.{Jl,x) = Ut(P,Xk-I)Vk{Jl,X)-llt{Jl,X)Vk{Jl,Xk-l) • (4d)
Ilt(p,Xt-I)Vk{Jl,Xk)-llk{Jl, Xk)Vk{Jl, Xk-I)

Table 2 shows thefunctions Uk{Jl, x) and fi{Jl,x) for the
cases of slab, cylindrical and spherical geometries.

Note that the special choice of the functions Uk{Jl,x)

Table 2. Solutions UtVl,X) and ~W,x), defined by equations (4c)and (4d),for slab, cylinderand sphere

Geometry III UtW, x) ~W,x)

Slab 1/2
sin [cot(Xt-x)] sin [COt(X-Xt_I)]

sin [COt(Xt-Xt-l)] sin [cot(Xt-Xt_I)]

Cylinder] 0
J o(cotx)YO(COtXl) -Jo(wtXt)Yo(cotx) Jo(COtXt-.)Yo(Wtx)-Jo(COtx)Yo(COtXt-l)

J O(COIXt-t)Yo(cotxt)-Jo(Wtx)Yo(WtXt-.) JO(COIXt-I)YO(WtXt)-JO(WIXt)YO(COtXI-I)

Sphere] -1/2
Xt - 1 sin [wt(Xt-x)] Xt sin[cot(x-Xt_l)]

x sin [cot(Xt -Xt-l)] x sin [coixt-xt_.)]

t Xo > 0; see footnote to Table 1.
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Table 3. The functions PAVl,X) and Qt(P,x), defined by equations (5d) and (5e), for slab, cylinder and sphere

1135

Geometry m Pt(P,x) Qt(P,x)

Slab 1/2
cos [Wt(Xt-x)] k cos[Wt(x-xt_ l)]

-wtkt . Wt't .
SIn(wt(Xt- Xt-l)] SIn [wt(Xt-Xt-l)]

Cylinder] 0
k J I(WtX)Yo(WtXt)-Jo(WtXt)Yl(WtX) k Jo(WtXt_l)Yl(WtX)-J I(WtX)Yo(WtXt-l)

-Wt t Wt 't
J o(WtXt-l)YO(WtXt)-Jo(WtXt)Yo(WtXt-l) J o(WtXt- .)Yo(w,Xt)-Jo(w,Xt)Yo(W,X'_I)

Sphere] -1/2 k Xt-l kt .
Xt

- t
sin [Wt(Xt -Xt-l)] SIn [w,(Xt-Xt-l)]

x {xwt COS [Wt(Xt-x)] +sin [wtCxt-x)]} x {xwt cos [wt(x - Xt _ l)] - sin [wt(x -xt- l)]}

t Xo > 0; see footnote to Table 1.

{'P*)T= {'P6,'Pt, 'P!, •.. , 'P:} (9b)

is the transpose of {'P*} and

equation (7b) was multiplied by Ul(P, x). The two results
are subtracted and the final result is integrated over the
interval (x, -1> Xl)' Thus, one has

x~ - 2m[u~(JI, Xl)Vl(P, Xl)- Ul(P, Xl)V~(P, Xl)]

- X~~fm[u~(p, Xl- dVl(P, Xl-1)

- Ul(P, Xl-1)V~(P, Xl-1)] = O. (8)

From equations (4c), (4d), (5d), (5e) and (8),one proves
the validity of equation (6).Table 3 shows the functions
PlVI, X)and Ql(P,x) for the cases of slab, cylindrical and
spherical geometries.

The system ofequations, equations (5), will form the
basis of the analysis for the computation of the
eigenvalues and the eigenfunctions of the eigenvalue
problem defined by equations (3).Therefore, one needs
the values of the functions Pl(p, x) and Qt(P, x) at the
end points X = Xl- l and X = Xl for each subregion k,
k = 1,2, ... , 11. These val ues can easily be 0 btained from
Table 3. For the case of cylindrical geometry (m = 0) the
use of the Wronskian relationship leads to a sim­
plification of the coefficients PlVI,xJand QtV4Xl -1)'

Equations (5) form a linear system of (11+ 1)
homogeneous equations for the determination of 'Pt,
k = 0, 1,2, ... ,11. These equations can be represented
in matrix form as

and v,.(P,x),equations (4c) and (4d), implies that

Ul(P,Xl-l) = 1; Ul(P,Xl) =0, (4e)

v,.(P,Xl- 1) = 0; v,.(P,Xl) = 1. (4f)

First consider the case when hl -> 00, k = 1,2,... ,
(11-1). If the solution, equation (4a), should satisfy
the boundary conditions, equations (3b), (3d}-{3£), one
has, respectively,

[cxo/Po-P1(P,xO)]n+P1(P,Xl)'Pt = 0, (5a)

Pl(P,Xl)'P:- 1+ [Ql(P, Xt)- Pt + 1(p, xl)]'P:

+PH 1(P,XH1)'Pt+1 = 0, k = 1,2, ... ,(11-1), (5b)

PnVl,Xn)'P:-1+[Qn(P,xn)+(cxjPn)]'P: = 0 (5c)

where

Pl(P,x) = klx 1- 2mu~(p, x), (5d)

Ql(P,X) = klXI-2mv~(p,x). (5e)

In the derivation of equations (5), the relation

(6)

was substantial.
To prove the relation, equation (6), one can write

down equation (3a) for the two linearly independent
solutions Ul(P, x) and Vl(P, x)

[x l- 2muap,x)]' +W;X I- 2m
Ul(p, x) = 0, (7a)

xl-2mv~(p, x)]' +W;XI-2mVlVl!.X) = o. (7b)

Equation (7a) is then multiplied by Vl(P,X), while

where
[K(p)]{'P*} = 0 (9a)

[K(P)] =

o
o
o

o

o bn - 1 an - 1 »,
o 0 b; an

(9c)
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where

NV/) = NoV/)+s([K(fi)]) (10)

ao = ao/po-P1V/,Xo). (9d)

bk = Pk(II,Xk); k = 1,2, ,11. (ge)

ak = Qk(jI,Xk)-Pk+IV/,Xk); k = 1,2, ,(11-1), (9f)

an = Q.V/.Xn)+aJPn' (9g)

If the system of equations. equation (9a). has a
nontrivial solution. the determinant of the matrix
[K(p)J. equations (9c}-{9g), should vanish

where NoV/) is the total number ofpositive eigenvalues
not exceeding p. when all the components of the vector
{'P*} corresponding to ii are zero and s([KV/)]) denotes
the 'sign-count' of the matrix [K(fi)] as defined in refs.
[1,2].

To find NoV/). one takes into account the fact that
when all the components of the vector {'P*} are zero,
the system of equations, equation (3a), degenerates into
a decoupled set, namely

(XI- 2m['Pk(P.x)])' +W;XI- 2m'P
k(;l.X) = 0 (11a)

(12b)
n

NoV/) = I N OkV/),
k=1

For the cases of slab (111 = 1/2) and sphere (m = -1/2)
an explicit relation for the determination of NOk( 1) is
available, namely

Noij"i) = int[wk(xk-xk_I)/n] (12c)

where the symbol'int (z)'denotes the largest integer not
exceeding the value of the argument z of the function.

For the case ofa cylinder there is no explicit formula
of the kind of equation (12c). However. this difficulty
can be alleviated ifone considers the fact that for 111 = 0,
equation (12a) has the form

JO(WkXk-I)YO(WkXk)-JO(WkXk)YO(WkXk-l) = 0 (12d)

and that the roots of this equation can be computed
using standard techniques and then stored in the
memory of the computer. Thus, for any specified value
of ii. the number of positive eigenvalues N ok(fi).lyingin
the range 0 < JI < ji, for each layer can be determined
and No(1)can be evaluated according toequation(12b).

The 'sign-count' s([KV/)]) is shown [1, 2J to be equal
to the number of negative elements along the main
diagonal of the matrix [Kl!.(fi)J. which is the
triangulated form ofthe matrix [K(/i)]. or, equivalently,
the 'sign-count' is equal to the number of negative
elements in the sequence dIldo, d2/dl, ... ,dJdn- 1>

where

This transcendental equation must first be solved for
each layer k, k = 1.2, ... , II to evaluate the number of
eigenvalues, N Ok(fi), not exceeding p, for it. Then. the
total number of positive eigenvalues. No(fi). for the
entire multilayered composite can be evaluated as

dk=dk-l(ak+ak-I)-dk-2br-l; k=2,3, .•• ,11 (13)

where ak and bk are defined by equations (9d}-{9g), and
do = 1, d l = ao.

The case of boundary conditions of the first kind at
x = Xo or x = x., or both, corresponds to Po = 0
or Pn = 0 or Po = Pn = 0, thus resulting in ao - OJ or
an- OJ or ao - OJ and an - OJ simultaneously, respec­
tively. In anyone of these cases. one simply neglects
the corresponding row and column of [K(J!)], as they
do not influence the elimination process described
by equation (13) and imply that

'P1(fi,XO) = 0 or 'P.(ji,xn) = 0

or 'P1(ii,xo) = 'Pn(/I,Xn) = 0,

respectively.
When both terms on the RHS of equation (10) are

computed as described in the above, the quantity Nv/)
becomes available and the following algorithm can be
used to find the eigenvalues Iii' i = 1,2,3, ... for the
system under consideration:

(9h)

(llb)

(11c)

subject to the

det ([K(II)]) = O.

The transcendental equation. equation (9h), has an
infinite number of real roots. which are the eigenvalues
of the eigenvalue problem, defined byequations (3).The
standard methods for the solution of equation (9h)
always carry the risk of missing some of the eigenvalues
in the course of computation; for large values of II the
estimation ofthe determinant of [K(J!)] can also lead to
numerical instabilities. Therefore, in the next section a
new approach will be described for the computation of
the eigenvalues of the eigenvalue problem, equations
(3).

5. PROCEDURE FOR THE COMPUTATION

OF TilE EIGENYALUES

Wittrick and Williams [1, 2] developed an efficient
procedure for the computation of the eigenfrequencies
and the buckling loads of linear elastic skeletal
structures. Since equation (9a) is presented in the same
form as the one utilized by Wittrick and Williams. it is
not difficult to adapt their procedure to compute the
eigenvalues of the problem considered here.

Wittrick and Williams [1, 2] have shown that the
number of positive eigenvalues, NV/), lying between
zero and some prescribed positive value II = ii of the
eigenvalue parameter II, is equal to

in Xk-I<X<Xk. k=1,2•.•. ,II,
boundary conditions

'Pk(J!.Xk-l) = o.
'PkV/,Xk) = o.

The eigencondition of the problem. defined by
equations (11), is

IIk(P,Xk-I)VkV/,Xk)-lIk(II,Xk)Vk(II,Xk-l) = O. (12a)

Step 1. Prescribe the following quantities: I, the total
number of eigenvalues Pi' i = 1,2•... , I to be
computed; 10 , the maximum admissible number of
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iterations to compute any eigenvalue Jli; A, the
accuracy of the eigenvalues desired.

Step 2. Prescribe upper bound u« = 0, lower bound
JII = 0 and the initial value of the increment r of the
eigenvalue parameter JI; set the eigenvalue counter
i = I.

Step 3. Set the iteration counter io = I.

Step 4. Set r = 2r and Jlu = Jlu+r. Compute NVlu). If
NVlu ) < i, go to Step 5, else go to Step 6.

Step 5. Sct JII = tt« and ;0 = ;0+ 1. If;o ~ 10 go to
Step 4, else go to Step 12.

Step 6. If abs (Jlu - JII) ~ A go to Step 11, else go to
Step 7.

Step 7. Set Ii = (JI" +JII)/2 and compute N(ji). If
NUl) < i, go to Step 8, else go to Step 9.

Step 8. Set JI) = ii and go to Step 10.

Step 9. Set JI" = ji and go to Step 10.

Step 10.Sefio = io+ I.Ifio ~ 10 go to Step 6,else go
to Step 12.

Step 11. Set Jli = Vlu+/11)/2 and store Jli' Set Jlu = Jli,
JlI = Jliand i = i+ 1. Ifi ~ 1go to Step 3,elsego to Step
13.

are in perfect thermal contact. However, the above
procedure can readily accomodate the situation that
involves contact conductances between any two
adjacent layers as now described.

Suppose there is contact conductance at the interface
x = Xl or equivalently, between the layers k and k+ I.
Assume that the presence ofthe interface resistance can
be replaced by a fictitious layer of thickness It.1+ I'
which is so small that its capacitance can be neglected.
Then the eigenvalueequation,equation(3a), in the local
coordinate x* and for cxt.t -+ I -+ 00 degenerates into the
following equation :

(14a)

in 0 < x* < It.1-+ I' The integration of this equation,
first from 0 to x* and then from x* to It.u I' after
transforming to the system coordinates, yields the
following expression:

A comparison of this result with equation (3c) reveals
that the two results coincide if

(14c)

Equation (l4c) implies that the presence of a contact
conductance 11k is equivalent to a fictitious layer with
0:* -+ 00 or w* -. O. The functions P(JI,x) and Q(jl, x) for
such a layer are determined from the results in Table 3,
for m = 1/2, by setting wt -+ Oandxx-xk _ 1 = 1*. One
obtains

Step 12. This is an error output indicating that
convergence has not been achieved in the sense of the
values of 10 and A prescribed.

P*VI,XH I) = P*(JI,Xt) = -lIt ,

Q*Vl,Xt_ l ) = Q*(/I,X t ) = Izt •

(15a)

(15b)

Step 13.This is the successful output ofthe algorithm
for the computation of the eigenvalues which is to be
followed by the computation of the corresponding
eigenfunctions.

From the description of the above algorithm it is
obvious that in the course of the iterative process of
converging upon some eigenvalue JII the choice of ji is
quite random. Thus one is not guaranteed that some
value of iiwill not be close enough to some zero of the
denominator of the functions PtVI,X) and QtVI,X),
equations (5d) and (5e) or that division by zero will not
occur in the course ofthe elimination process, described
by equation (13). In both cases a slight change of the
value of Ji enables one to continue the execution of the
algorithm discussed. It should also be noted that this
multilayer algorithm is not suitable for the compu­
tation of the eigenvalues of a single layer problem,
subject to boundary conditions of the first kind at both
boundaries.

6. COl'.'TAcr RESISTAl'\CE AT TIlE 1l'.7ERFACE

The foregoing analysis and the computational
scheme described are directly applicable if all the layers

The computational procedure for this case is now
straightforward. Whenever there is a contact conduct­
ance at some interface x = Xl>its presence is replaced by
a fictitious layer for which the functions P" and Q* are
taken as defined by equations (15). In the case Izk -+ 00,
one has P" = Q* -+ 00 for the fictitious layer and as a
result, byequation (9f),at -+ 00 for it. Insuch acase one
neglects the corresponding row and column of [K(Ji)]
in equation (9c) as they do not influence the
computational process.

Once the eigenvalues are computed, the determi­
nation of the eigenfunction can be carried out making
use of equations (5a}-{5c), i.e.

'f't = [P1{Jl,xo)-exolPo]'f'6jP,{Jl,x ,), (I5c)

'f't+ I = {[Pu 1(.11, Xl) - Qt{Jl, Xk)]'!': - Pt{Jl,Xk)'l't -I}

-:- Pu IVI,XU d, k = 1,2, ... ,(1/-1). (l5d)

Since the eigenfunctions are arbitrary within a
multiplication constant, one can assume that 'f'~ = Po
and then compute consequently 'f't, k = 1,2, . . . , /I

from equations (15c) and (15d). For boundary
conditions of the first kind Po = 0 and 'l't = I can be
accepted to start the computation of the other
components of the vector {'f'*}.
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To find the norm of the eigenfunctions one makes use
of the relation [8J

fx W;.().x) dx = ~2 {(1- );~2) W;'().x)

+ ![W;"V.x)] 2
} (16)

where n~ is any linear combination ofBessel functions.
The integrals defined by equation (2b) are rewritten

in a more convenient form as

Comparison between the RHS ofequation (17) and the
LHS of equation (16) yields

The differentiation of equation (18) leads one to

W;"'<WkX) = x- 2m[Xm'P;k(Pj,X)

-mxm-1'Pjk(Jl j,x)]. (19a)

The last relation can be rearranged as

W;"'<Wkx) = k;-IXm-I['P:_IP1(Pj,X)

+ 'PtQl(Pj,X)] _mx-(m+ 1)'Pj1Vlj, X). (I9b)

Introducing equation (18) and equation (I9b) into

equation (16), one finally obtains

ix>
X 1- 2m'PA(Pj, x) dx

Xk- l

= (2wA)-I[x;-2m(xfw~-m2)'Pt2

-x;-:j(xf_IwA-m
2)'Pt'=I]

+(2W;1)-lx;-2m{k;- Ixfm['Pt_IP1(Jlj,Xl)

+'PtQl(Jl j,Xl)]-m'Ptf

-(2W;1)-IX;-:j{ki Ixf~ I['Pt-IP1(Jlj,Xl-l)

+ 'PtQ1Vlj, Xl-I)] -m'Pt_tl2. (20)

Equation (20)allows one to estimate the normalization
integral defined by equation (2b) and then estimate the
normalized eigenfunction

'PjkVl j,X) = 'Pjl(Jlj,x)Nj-I/2. (21)

Finally, equations (2d) and (2e) take the form

n,{xo) = {'Pnl +PI(Jlj,xo)]

- 'PtP l(Jlj,xl)}(cto+ Pol-I, (22a)

n.{x.) = {'P:[I-Q.Vlj,x.)]

-'P:_IP.(Jlj,x.)}(ct.+P.) -I . (22b)

7. TIlE SOLUTION OF

TIlE ORIGINAL PROBLEl\1

The solution of the initial-boundary value problem,
defined by equations .(1), was written down in the
general form, equation (2a). Now it will be written
explicitly for the cases of multilayered slabs, cylinders
and spheres. In a form adequate for direct
computations, one has

for m = 1/2,

(23a)

{[ (
1 Xl nix· .-1 I)J

1i.(x,t) = P.+ct. -k In - + I -k In -' + I -,- c1Jo
1 X 1;1 +1 i Xj_1 I;k IjX/

[ (
1 xl-II X · 1-1 I)J}+ PO+ctO -In--+ I -In-' + I - c1J.
kl Xl-I 1;1 k, Xj_1 1;1 II/XI

[ (

n 1 .-1 1 ))-1
X a.oP.+r:t.Po+ cto':1.. I -k In~ + I -,-

;1 1 Xl-I 1;1 11Xl

(23b)



for m = 0, and

for m = -1/2.
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[{ [1(1 1) n 1(1 1) n-l 1]}T,.(x, t) = fJn + CXn - - - - + I - - - - + I -2 11>0
kl X Xl j=k+ 1 k, Xj-l Xj j=l hiXj

{ [1(1 1) i-II (1 1) i-II]} ]+ fJo+CXo - --- + I - --- + I - 11>
kk Xk-l X j=1 k j Xj-l x, 1=1 hixf n

{ [

n 1(1 1) n-l 1]}-1
x cxofJn +cxnfJo + CXOCXn I -k -- - - + I -,2

l=1 l Xk-l Xl k=1 IlXl
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(23c)

x (em)

FIG. 2. Temperature distribution for various times (the
example of ref. [10]).

400

I-

Once the eigenvalues and the eigenfunctions, Ilj and
'l'lk(jlj,X), respectively, have been computed as was
described in the previous sections, no difficulty is
encountered in evaluating the solutions, equations (23),
having in mind also Tables 1-3.

8. ILLUSTRATIVE EXAMPLES AND

CONCLUDING REMARKS

To illustrate the applicability of the solutions derived
and the method proposed, a number ofproblems were
solved. The code prepared for this purpose was first
tested on several single layered problems with solutions
that were previously known. Then the same problems
were modelled as multilayer problems, the adjacent
layers having identical physical properties. A
satisfactory coincidence (approximately of the order of
the accuracy of the eigenvalues computed) was
observed in the computation of the corresponding
eigenfunctions and temperature distributions.

Figure 2 shows some temperature distributions for
the numerical example discussed in detail in ref. [10].

Figures 3 and 4 show similar distributions for the
cases of cylindrical (m = 0) and spherical (Ill = -1/2)

FIG.3.Temperature distributions for a two layered cylinder for various times: af = 5,xo = 1,x l = 2,x l = 4,
a! = 1, m = 0, ao = al = I, Po = Pl = O,lI>o = TO, lI>2 = 0, 1i(x,O) = 0, k = 1,2.
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1.0

f-
0

<,

f-

x

FIG. 4. Temperature distributions for a two layered sphere for various times: a1 = 5,!Xi = I, Xo = I, XI = 2,
X2 = 4, III = -1/2, ao = a2 = I, Po = P2 = 0,11> = 1'0,11>2 = 0, l1(x,O)= 0, k = 1,2.

geometries, respectively the verification of the results
on Figs. 2-4 was obtained following the testing strategy
mentioned above.
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DIFFUSION DANS DES COUCHES COMPOSITES ET SOLUTION AUTOMATIQUE DU
PROBLEr-.1E DES VALEURS PROPRES

Resumc-Le tra iternent analytique du probleme de la conduction thermique unidirectionnelle dans des
composites multicouches necessite la solut ion d'un problerne de valeurs propres si cette solution an alytique
do it etre appliquee ades buts pratiques. Un tel problerne de valeur propre n'est pas du type conventionnel
Sturm-Liouville acau se des discontinuites des fonctions. Sa solution avec les techniques conventionnelles
n'est pas garantie de I'absence de valeurs propres au cours du calcul,

Une solution analytique d'un problerne variabledeconduction dans des plaques,des cylindres etdes spheres
multicouchesest presentee qui applique un algorithmecorrect pour le calcul automatiquedes valeurs proprcs

et des fonctions propres du systerne resultant de type Sturm-Liouville.

DIFFUSION IN GESCHICHTETEN K6RPERN MIT AUTOMATISCHER
L6SUNG DES EIGENWERTPROBLEMS

Zusammenfassung-Die an alyt ischc Behandlung instationarer Problcme der eindimensionalen
Wiirmeleitung in mehrschichtigen Korpem nach dem Verfahren der orthogonalen Reihenentwicklung
erfordert die Losung eine s ent spr echenden Eigenwenproblems , wenn d ie a na lytische Losung aufpraktische
Probleme angewendet werden soli. Solche Eigenwertproblerne sind nicht vom normalen Sturm-Liouville­
Typ, da die Koffiz ienten-Funktioncn D iskontinuitiiten enthalten. Die Losung nach konventionellen
Verfahren ist wegen fehlender Eigenwerte im Verlaufder Berechnung nicht immer rnoglich. Eine analytischc
Losung instationarer Probleme der eindimensionalen Wiirmeleitung in mehrschichtigen Platten, Zylindern
und Ku geln wird angegeben, die einen sicheren Algorithmus fiir die automatische Berechnungder Eigenwerte

und der Eigenfunktionen des resultierenden Systems vom Sturm-Liouville-Typ enthalt,

JlCCJlE.D,OBAHJlE .D,11<1><1>Y3lH1 B KOMn031HHbIX CJlORX HA OCHOBAHIIlt
PEWEHlHI 3A.D,A4J1 HA COliCfBEHHblE 3HA4EHI1R

AHHOT3UHH-AllamlTlt'lCcKoe nccncnoaauue aanax uecraunouapuoti TCnJlOnpOBOJlIlOCTlI B O.lIlO~ICPllbI X

~lIIoroc,loiillbIX xosmonrrusrx cpenax sreronovt oproronansuoro paanoxeuns rpefiyer pcureuus
coornercreyiourcii JalI a'llI ua co ocracunue Jlla'lelllill B cnyxae, ecrnt 0110 lle06XO.:lII~1O iLlll
npaxrnxecxnx ueneil . Taras sanasa lie aan ser cs 06bl'llloii Jana'leii Tllna WTYP~la-J1I1YBII.l.ll1 IlJ-Ja
lIaJlII'lllll paspstaoa B KOJ<P<PlIIlIlCIITllbIX <PYIlKIUlliX. Ee peureuue 06bl'lllbl~1II MeTOna~1Il IIC rapauru­
pyercs anuny OTCYTCTBlIlI coficrseuuux Jlla'lellllii B npouecce pacxcra , Ilpcncraaneuo aua.nrruxecxoe
pcurenue ozutoii Jana'll1 necrauuonapnon rennonpoaonnocru B O,UIlOMepllbIX xurorocnotluux nmrrax.
uunnnnpax II c<pepax, xoropoe na cr lIane;+<lIblii anropurxt iLlll aBTOMaTlI'leCKOrO pacxera coficrueuusrx

Jlla'lellllii II <PYIIKllIIii CIICTe~lbl ypauuennii mna WTYP~I3-JlIlYBllilJlll.
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